Edge-outer graph embedding and the complexity of the DNA reporter strand problem
نویسندگان
چکیده
In 2009, Jonoska, Seeman and Wu showed that every graph admits a route for a DNA reporter strand, that is, a closed walk covering every edge either once or twice, in opposite directions if twice, and passing through each vertex in a particular way. This corresponds to showing that every graph has an edge-outer embedding, that is, an orientable embedding with some face that is incident with every edge. In the motivating application, the objective is such a closed walk of minimum length. Here we give a short algorithmic proof of the original existence result, and also prove that finding a shortest length solution is NP-hard, even for 3-connected cubic (3-regular) planar graphs. Independent of the motivating application, this problem opens a new direction in the study of graph embeddings, and we suggest new problems emerging from it.
منابع مشابه
A Time Dependent Pollution Routing Problem in Multi-graph
This paper considers a time dependent(the travel time is not constant throughout the day) pollution routing problem (TDPRP), which aids the decision makers in minimizing travel time, toll cost and emitted pollution cost. In complexity of urban areas most of the time one point is accessible from another with more than one edge. In contrast to previous TDPRP models, which are designed with only ...
متن کاملTesting Full Outer-2-planarity in Linear Time
A graph is 1-planar, if it admits a 1-planar embedding, where each edge has at most one crossing. Unfortunately, testing 1-planarity of a graph is known as NP-complete. This paper considers the problem of testing 2-planarity of a graph, in particular,testing full outer-2planarity of a graph. A graph is fully-outer-2-planar, if it admits a fully-outer-2-planar embedding such that every vertex is...
متن کاملA Survey on Complexity of Integrity Parameter
Many graph theoretical parameters have been used to describe the vulnerability of communication networks, including toughness, binding number, rate of disruption, neighbor-connectivity, integrity, mean integrity, edgeconnectivity vector, l-connectivity and tenacity. In this paper we discuss Integrity and its properties in vulnerability calculation. The integrity of a graph G, I(G), is defined t...
متن کاملParallelizing Assignment Problem with DNA Strands
Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...
متن کاملOn existence of reporter strands in DNA-based graph structures
Through self-assembly of branched junction molecules many different DNA structures (graphs) can be assembled. We show that every multigraph can be assembled by DNA such that there is a single strand that traces each edge in the graph at least once. This strand corresponds to a boundary component of a two-dimensional orientable surface that has the given graph as a deformation retract. This boun...
متن کامل